AXIAL FLOW OF A NONLINEAR VISCOPLASTIC FLUID
THROUGH CYLINDRICAL PIPES
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The differential equation of motion is derived for fluids obeying the Bulkley —Herschel
law and flowing through pipes of arbitrary cross section.

It has been pointed out in several studies [1, 2] that the Shvedov —Bingham model is inadequate for
describing many materials with both viscous and plastic characteristics. The authors here have, with the
aid of a rotary viscometer, obtained nonlinear relations for the viscoplastic flow of polymer-cement com-
posites which quite well agree with the triparametric Bulkley —Herschel equation [3]. In tensor form, this
equation is
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A simultaneous solution of this and the Cauchy equation leads to a tensorial equation of motion [2]:
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We will consider the laminar steady flow of a fluid according to Eq. (1) through a pipe of arbitrary
cross section and the axis in line with the z-axis of a Cartesian system of coordinates, We introduce the
notation x =xj, y =Xy, z =X;. The stress tensor components along the coordinate axes are then
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with 6jj denoting the Kronecker delta, w = ug, uy =uy, U; =ug.
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Projecting Eq. (2), with (3) taken into consideration, on the coordinates and disregarding the inertia

forces, we obtain
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Since the stream lines are parallel to the cylinder axis, hence the velocity components ux and ugy are
equal to zero, while uz; = ¢ (X, y). Therefore, Egs. (4) become
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where
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The continuity equation is satisfied identically. It follows from Egs. (5) and (6) that the pressure is a
linear function of the z-coordinate and, therefore,

_Q = const =a>0.
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Inserting the values of derivatives 6h/8x, 8h/9y into Eq. (6) and performing a few elementary opera-
tions, we arrive at the Bulkley—Herschel differential equation of axial flow through cylindrical pipes of
arbitrary cross section:
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This equation cannot be solved for the general case, Let us change it to a form convenient for solving
various specific problems related to the flow of such fluids through pipes and annular channels with cross
sections having a constant radius of curvature.

Inside the cross section we define some region bounded by a closed curve ¢(x, y) = const, These
curves (family of velocity isolines) lie within the plastic-deformation zone and do not intersect, The quasi-
solid core of the stream is bounded by the maximum-velocity isoline,

Let v be the outer normal to a velocity isoline. Obviously, the intensity of shear rates with respect
to the modulus is equal to the normal derivative of the flow velocity:
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The — sign in Eq. (8) applies to a solid cylinder, because function ¢ (x, y) decreases along the normal.
According to [4], the curvature of a velocity isoline can be expressed as
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Inserting (8), (9), and the second normal derivative of the velocity function 8%¢ /8% into Eq. (7) will re-
duce this equation to

- 09"

+ 1,-FRR"Y —

-, 0% (— 0 P} )

koht v —L v
ToovE o

+oa=0. (10)
The sign before 7, in Eq. (10) is selected so as to agree with the sign of the normal derivative of velocity,
because the shear stress must be greater than the yield point,

With n =1, (10) becomes the same equation which has been derived in [4] for a Shvedov—Bingham
fluid.

1. Special Cases, We consider the axial flow of a nonlinear viscoplastic fluid through a circular
cylinder, In this case
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and, therefore, Eq. (10) becomes
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Integrating Eq. (11) and determining the constant of integration from the conditions

u@®) = 0 (condition of adhesion) and du/dr =0 at r =r,

with the radius of the core r, = 27,/, we obtain the well-known equation [2] of the velocity profile:
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2. Flow between Parallel Planes. The distance between parallel planes will be denoted by 2H. With
the origin of coordinates located on the median plane and the z-axis running in the direction of flow, the

x-axis will run along the outer normal to a velocity isoline and, therefore,
o _ du
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Integrating Eq. (12) and considering that the system adheres to the boundary planes, with the thickness of

the quasisolid core 2h; = 27,/«, we arrive at the following equation for the velocity profile:
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The flow rate per unit channel width is

H
Q = 2Rglimax + 25 u{x) dx, where Umax = 4 (hy).
ho

NOTATION

is the intensity of strain rates;

is the deviator of the stress tensor;

is the deviator of the strain rate tensor;
is the static yield point;

is the consistency index;

is the exponent of viscous anomaly;

is the velocity;

is the pressure drop;

is the outer normal to velocity isoline;
is the radius of curvature;

is the radial coordinate;

is the pipe radius;

is the pressure;

is the radius of quasisolid core,
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