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The differential equation of motion is derived for fluids obeying the Bu lk l ey -Her sche l  
law and flowing through pipes of a rb i t r a ry  cross  section. 

It has been pointed out in severa l  studies [1, 2] that the Shvedov-Bingham model is inadequate for 
describing many mater ia ls  with both viscous and plastic charac ter i s t ics .  The authors here have, with the 
aid of a ro t a ry  v iscometer ,  obtained nonlinear relat ions for the viscoplast ic  flow of po lymer -cement  com-  
posites which quite well agree with the t r ipa ramet r i c  Bu lk l ey -Her sche l  equation [3]. In tensor  form, this 
equation is 

A simultaneous solution of this and the Cauehy equation leads to a tensorial  equation of motion [2]" 

2 ( ~  -t-khn-1) div@o@2[---~-2 @k(n~ t )h~ -~ lg radh - -g radp=poa .  (2) 

We will consider  the laminar  steady flow of a fluid according to Eq. (1) through a pipe of a rb i t r a ry  
c ross  section and the axis in line with the z-axis  of a Cartesian sys tem of coordinates.  We introduce the 
notation x = xl, y = x2, z = x 3. The s t ress  tensor  components along the coordinate axes are  then 

+ + 

with 5ij denoting the Kronecker  delta, u 1 = Ux, u 2 = Uy, u 3 = Uz. 

Project ing Eq. (2), with (3) taken into consideration, on the coordinates and disregarding the inert ia  
forces ,  we obtain 

3 

]=1 

4_ h ~ ~ k ( n - - 1 ) h  '~-2 -ffffxj\ axj~- O x ~ ] j = O  (4/ 

( i = l ,  2, 3). 

Since the s t r eam lines are parallel  to the cylinder axis, hence the velocity components Ux and Uy are 
equal to zero,  while u z = q~(x, y). Therefore ,  Eqs. (4) become 

Op = 0; Op _ 0; (5) 
Ox Og 
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where  

 /-(o97 (o91  
h= v \ Tx / + \-~y l"  

The continuity equation is sat isf ied identically.  It  follows f r o m  Eqs. (5) and (6) that the p r e s s u r e  is a 
l inear  function of the z -coordina te  and, there fore ,  

Op = const = a > 0 .  
Oz 

Inser t ing  the va lues  of de r iva t ives  ah/ax,  ah/ay into Eq. (6) and per forming  a few e l e m e n t a r y  o p e r a -  
t ions,  we a r r i ve  at the B u l l d e y - H e r s c h e l  different ia l  equation of axial flow through cyl indrical  pipes of 
a r b i t r a r y  c r o s s  section: 

[ k Ox } Oy ~ Ox Oy OxOg 

+\@/ Ox~ ] + knh".-~ L \ O;x / ~ o-T" @ oxo---j + \ @ / ou --~ 

This equation cannot be solved for  the gene ra l  case.  Let  us change i t  to a fo rm convenient for  solving 
va r ious  speci f ic  p rob lems  re la ted  to the flow of such fluids through pipes and annular channels with c ross  
sect ions  having a constant radius  of curva ture .  

Inside the c ro s s  sect ion we define some region bounded by a closed curve  r y) = const. These  
curves  (family of ve loc i ty  isolines) lie within the p las t i c -de fo rmat ion  zone and do not in te rsec t .  The quas i -  
solid core  of the s t r e a m  is bounded by the m a x i m u m - v e l o c i t y  isoline.  

Le t  v be the outer  normal  to a veloci ty  isoline.  Obviously, the intensi ty  of shear  ra tes  with r e sp ec t  
to the modulus is equal to the no rma l  der iva t ive  of the flow velocity:  

0 9  _ 4 -  h. (8) 
Ov 

The - sign in Eq. (8) applies  to a solid cylinder,  because  function r y) d e c r e a s e s  along the normal .  

According to [4],  the curva ture  of a veloci ty  isoline can be expres sed  as 

1 _ _.tO'9 (09~-~ 09 09 0'9 ~ 0~9 ( 0 9 V I  (91 

Inser t ing  (8), (9), and the second normal  der iva t ive  of the veloci ty  function 02•/8v 2 into Eq. (7) will r e -  
duce this equation to 

( 0 ~ )  
knhn-1 029 __ • T~ ~ v  -~-a=0. (10) 

Ov 2 p 

The sign before -r 0 in Eq. (10) is se lected so as to agree  with the sign of the normal  der iva t ive  of velocity,  
because  the shea r  s t r e s s  mus t  be g r e a t e r  than the yield point. 

With n = 1, (10) becomes  the same  equation which has been derived in [4] for  a Shvedov -B ingham 
fluid. 

1. Special  Cases .  We consider  the axial  flow of a nonlinear v i scoplas t ic  fluid through a c i r cu la r  
cyl inder .  In this case  

u =  ~ (r); 09 du du - - = - - d O ;  h = - - - - ;  p = - - r ,  
Ov dr dr 

and, there fore ,  Eq. (10)becomes  

dr dr r dr 
= g - -  % (11) 

r 
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Integrat ing Eq. (11) and de termining  the constant  of in tegra t ion  f r o m  the conditions 

u(R) = 0 (condition of adhesion) and d u / d r  = 0 at r = r0, 

with the radius  of the core  r 0 = 2 v 0 / a  , we obtain the wel l -known equation [2] of the veloci ty  profile:  

u( r )  

l+n l+n 

~ ( l + n )  ~ k 2k k " 

2. Flow between Pa ra l l e l  Planes .  The dis tance between para l le l  planes will be denoted by 2H. With 
the or igin of coordinates  located on the median plane and the z -ax i s  running in the d i rec t ion  of flow, the 
x -ax i s  will run along the outer  no rma l  to a veloci ty  isol ine and, therefore ,  

O~ du 
- -  = - - < 0 .  

Ov dx 

Since the veloci ty  i so l ines  a re  para l le l  to the boundary planes,  hence p = ,o and Eq. (10) becomes  

dx k 

In tegra t ing Eq. (12) and consider ing that the s y s t e m  adheres  to the boundary planes,  with the thickness of 
the quasisol id  core  2h 0 = 2~-0/a , we a r r i v e  at the following equation for  the veloci ty  profile:  

u (x) (1 + n)  (H  - -  ~o) ~ - (x - -  ~o) ~ ] " 

The flow ra te  per  unit channel width is  

H 

Q = 2houma x + 2 S u(x) dx, where gmax 
ho 

= u (ho). 

h is the in tens i ty  of s t r a i n  r a t e s ;  
I] 0 is the devia tor  of the s t r e s s  tensor ;  
@0 is the devia tor  of the s t r a in  r a t e  tensor ;  
~0 is  the s ta t ic  yield point; 
k is the cons is tency  index; 
n is the exponent of viscous anomaly;  
u is the velocity;  
a is the p r e s s u r e  drop;  
v is the outer  no rm a l  to veloci ty  isoline;  
p is the radius  of curva ture ;  
r is the radia l  coordinate;  
R is the pipe radius;  
p is the p r e s s u r e ;  
r 0 is the radius  of quasisol id core .  
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