AXIAL FLOW OF A NONLINEAR VISCOPLASTIC FLUID

THROUGH CYLINDRICAL PIPES

I. P. Grinchik and A. Kh. Kim

The differential equation of motion is derived for fluids obeying the Bulkley-Herschel law and flowing through pipes of arbitrary cross section.

It has been pointed out in several studies [1, 2] that the Shvedov-Bingham model is inadequate for describing many materials with both viscous and plastic characteristics. The authors here have, with the aid of a rotary viscometer, obtained nonlinear relations for the viscoplastic flow of polymer-cement composites which quite well agree with the triparametric Bulkley-Herschel equation [3]. In tensor form, this equation is

$$
\begin{equation*}
\Pi_{0}=2\left(\frac{\tau_{0}}{h}+k h^{n-1}\right) \dot{\Phi}_{0} \tag{1}
\end{equation*}
$$

A simultaneous solution of this and the Cauchy equation leads to a tensorial equation of motion [2]:

$$
\begin{equation*}
2\left(\frac{\tau_{0}}{h}+k h^{n-1}\right) \operatorname{div} \dot{\Phi}_{0}+2\left[-\frac{\tau_{0}}{h^{2}}+k(n-1) h^{n^{-2}}\right] \operatorname{grad} h-\operatorname{grad} p=\rho_{0} \vec{a} . \tag{2}
\end{equation*}
$$

We will consider the laminar steady flow of a fluid according to Eq. (1) through a pipe of arbitrary cross section and the axis in line with the z-axis of a Cartesian system of coordinates. We introduce the notation $x=x_{1}, y=x_{2}, z=x_{3}$. The stress tensor components along the coordinate axes are then

$$
\begin{equation*}
\boldsymbol{\tau}_{i j}=-\delta_{i j} p+\left(\frac{\tau_{0}}{h}+k h^{n-1}\right)\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right), \tag{3}
\end{equation*}
$$

with $\delta_{i j}$ denoting the Kronecker delta, $u_{1}=u_{x}, u_{2}=u_{y}, u_{3}=u_{z}$.
Projecting Eq. (2), with (3) taken into consideration, on the coordinates and disregarding the inertia forces, we obtain

$$
\begin{gather*}
\sum_{i=1}^{3}\left[-\delta_{i j} \frac{\partial p}{\partial x_{j}}+\left(\frac{\tau_{0}}{h}+k h^{n-\mathbf{1}}\right) \frac{\partial}{\partial x_{j}}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)\right. \\
\left.+\left(-\frac{\tau_{0}}{h^{2}}+k(n-1) h^{n-\mathbf{2}}\right) \frac{\partial h}{\partial x_{j}}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)\right]=0 \tag{4}\\
(i=1,2,3)
\end{gather*}
$$

Since the stream lines are parallel to the cylinder axis, hence the velocity components u_{x} and u_{y} are equal to zero, while $u_{z}=\varphi(x, y)$. Therefore, Eqs. (4) become

$$
\begin{gather*}
-\frac{\partial p}{\partial x}=0 ; \quad-\frac{\partial p}{\partial y}=0 \tag{5}\\
-\frac{\partial p}{\partial z}+\left(\frac{\tau_{0}}{h}+k h^{n-1}\right)\left(\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}\right)+\left[-\frac{\tau_{0}}{h^{2}}+k(n-1) h^{n-2}\right]\left[\frac{\partial h}{\partial x}\left(\frac{\partial \varphi}{\partial x}\right)+\frac{\partial h}{\partial y}\left(\frac{\partial \varphi}{\partial y}\right)\right]=0 \tag{6}
\end{gather*}
$$

Belorussian Polytechnic Institute, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 23, No. 2, pp. 336-339, August, 1972. Original article submitted September 27, 1971.

01974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.
where

$$
h=\sqrt{\left(\frac{\partial \varphi}{\partial x}\right)^{2}+\left(\frac{\partial \varphi}{\partial y}\right)^{2}}
$$

The continuity equation is satisfied identically. It follows from Eqs. (5) and (6) that the pressure is a linear function of the z -coordinate and, therefore,

$$
-\frac{\partial p}{\partial z}=\text { const }=\alpha>0
$$

Inserting the values of derivatives $\partial \mathrm{h} / \partial \mathrm{x}, \partial \mathrm{h} / \partial \mathrm{y}$ into Eq. (6) and performing a few elementary operations, we arrive at the Bulkley-Herschel differential equation of axial flow through cylindrical pipes of arbitrary cross section:

$$
\begin{gather*}
h^{-3}\left(\tau_{0}+k h^{n}\right)\left[\left(\frac{\partial u}{\partial x}\right)^{2} \frac{\partial^{2} u}{\partial y^{2}}-2 \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y} \cdot \frac{\partial^{2} u}{\partial x \partial y}\right. \\
\left.+\left(\frac{\partial u}{\partial y}\right)^{2} \frac{\partial^{2} u}{\partial x^{2}}\right]+k n h^{n-3}\left[\left(\frac{\partial u}{\partial x}\right)^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y} \cdot \frac{\partial^{2} u}{\partial x \partial y}+\left(\frac{\partial u}{\partial y}\right)^{2} \frac{\partial^{2} u}{\partial y^{2}}+\alpha=0\right. \tag{7}
\end{gather*}
$$

This equation cannot be solved for the general case. Let us change it to a form convenient for solving various specific problems related to the flow of such fluids through pipes and annular channels with cross sections having a constant radius of curvature.

Inside the cross section we define some region bounded by a closed curve $\varphi(x, y)=$ const. These curves (family of velocity isolines) lie within the plastic-deformation zone and do not intersect. The quasisolid core of the stream is bounded by the maximum-velocity isoline.

Let ν be the outer normal to a velocity isoline. Obviously, the intensity of shear rates with respect to the modulus is equal to the normal derivative of the flow velocity:

$$
\begin{equation*}
\frac{\partial \varphi}{\partial v}= \pm h \tag{8}
\end{equation*}
$$

The - sign in Eq. (8) applies to a solid cylinder, because function $\varphi(x, y)$ decreases along the normal.
According to [4], the curvature of a velocity isoline can be expressed as

$$
\begin{equation*}
\frac{1}{\rho}=-h^{-3}\left[\frac{\partial^{2} \varphi}{\partial x^{2}}\left(\frac{\partial \varphi}{\partial y}\right)^{2}-2 \frac{\partial \varphi}{\partial x} \cdot \frac{\partial \varphi}{\partial y} \cdot \frac{\partial^{2} \varphi}{\partial x \partial y}+\frac{\partial^{2} \varphi}{\partial y^{2}}\left(\frac{\partial \varphi}{\partial x}\right)^{2}\right] \tag{9}
\end{equation*}
$$

Inserting (8), (9), and the second normal derivative of the velocity function $\partial^{2} \varphi / \partial \nu^{2}$ into Eq. (7) will reduce this equation to

$$
\begin{equation*}
k n h^{n-1} \frac{\partial^{2} \varphi}{\partial v^{2}}-\frac{\left(\pm \boldsymbol{\tau}_{\mathbf{0}}+k h^{n-1} \frac{\partial \varphi}{\partial v}\right)}{\rho}+\alpha=0 \tag{10}
\end{equation*}
$$

The sign before τ_{0} in Eq. (10) is selected so as to agree with the sign of the normal derivative of velocity, because the shear stress must be greater than the yield point.

With $\mathrm{n}=1$, (10) becomes the same equation which has been derived in [4] for a Shvedov-Bingham fluid.

1. Special Cases. We consider the axial flow of a nonlinear viscoplastic fluid through a circular cylinder. In this case

$$
u=\varphi(r) ; \quad \frac{\partial \varphi}{\partial v}=\frac{d u}{d r}<0 ; \quad h=-\frac{d u}{d r} ; \rho=-r
$$

and, therefore, Eq. (10) becomes

$$
\begin{equation*}
k \frac{d}{d r}\left|\frac{d u}{d r}\right|^{n}+\frac{k}{r}\left|\frac{d u}{d r}\right|^{n}=\alpha-\frac{\tau_{0}}{r} \tag{11}
\end{equation*}
$$

Integrating Eq. (11) and determining the constant of integration from the conditions

$$
u(R)=0 \text { (condition of adhesion) and } d u / d r=0 \text { at } r=r_{0}
$$

with the radius of the core $r_{0}=2 \tau_{0} / \alpha$, we obtain the well-known equation [2] of the velocity profile:

$$
u(r)=\frac{2 k n}{\alpha(1+n)}\left[\left(\frac{\alpha R}{2 k}-\frac{\tau_{0}}{k}\right)^{\frac{1+n}{n}}-\left(\frac{\alpha r}{2 k}-\frac{\tau_{0}}{k}\right)^{\frac{1+n}{n}}\right]
$$

2. Flow between Parallel Planes. The distance between parallel planes will be denoted by 2 H . With the origin of coordinates located on the median plane and the z-axis running in the direction of flow, the x -axis will run along the outer normal to a velocity isoline and, therefore,

$$
\frac{\partial \varphi}{\partial v}=\frac{d u}{d x}<0
$$

Since the velocity isolines are parallel to the boundary planes, hence $\rho=\infty$ and Eq. (10) becomes

$$
\begin{equation*}
\frac{d}{d x}\left(-\frac{d u}{d x}\right)^{n}=\frac{\alpha}{k} \tag{12}
\end{equation*}
$$

Integrating Eq. (12) and considering that the system adheres to the boundary planes, with the thickness of the quasisolid core $2 h_{0}=2 \tau_{0} / \alpha$, we arrive at the following equation for the velocity profile:

$$
u(x)=\frac{n}{(1+n)}\left(\frac{\alpha}{k}\right)^{1 / n}\left[\left(H-\tau_{0}\right)^{\frac{1+n}{n}}-\left(x-\tau_{0}\right)^{\frac{1+n}{n}}\right]
$$

The flow rate per unit channel width is

$$
Q=2 h_{0} u_{\max }+2 \int_{h_{0}}^{H} u(x) d x, \text { where } u_{\max }=u\left(h_{0}\right)
$$

NOTATION

$h \quad$ is the intensity of strain rates;
$\Pi_{0} \quad$ is the deviator of the stress tensor;
$\Phi_{0} \quad$ is the deviator of the strain rate tensor;
T_{0} is the static yield point;
$k \quad$ is the consistency index;
n is the exponent of viscous anomaly;
u is the velocity;
$\alpha \quad$ is the pressure drop;
$\nu \quad$ is the outer normal to velocity isoline;
$\rho \quad$ is the radius of curvature;
r is the radial coordinate;
$R \quad$ is the pipe radius;
p is the pressure;
$r_{0} \quad$ is the radius of quasisolid core.

LITERATURE CITED

1. B. M. Smol'skii, Z. P. Shul'man, and V. M. Gorislavets, Rheodynamics and Heat Transfer in Nonlinear Viscoplastic Materials [in Russian], Nauka i Tekhnika, Minsk (1970).
2. A. Kh. Kim and B. I. Lapushina, Inzh.-Fiz. Zh., 14, No. 2 (1968).
3. W. H. Herschel and R. Bulkley, Kolloid. Zeitschr., 39, 291 (1926).
4. A. Kh. Kim, Some Problems in the Rheology of Viscoplastic Dispersion Systems [in Russian], Izd. BPI, Minsk (1960).
